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Abstract

The discrete BFKL formalism which accounts for the running of the

coupling and incorporates information about the phase of the oscillations

at small transverse momentum, arising from the infrared properties of

QCD, leads to a QCD pomeron consisting of a set of discrete Regge poles.

Here we discuss under what circumstances this discrete pomeron leads to

an amplitude which matched the prediction of a DGLAP analysis in the

double leading logarithm limit.

1 Introduction

The BFKL formalism [1] (in the case of zero momentum transfer) considers
an amplitude, A(y, t), for the forward scattering of a gluon with transverse
momentum, kT (t = ln(k2T /Λ

2
QCD)), with rapidity gap y, which can be treated

in terms of its Mellin transform

A(y, t) =

∫

C

dωeωyAω(t) (1)

where C represents a contour taken to the right of any singularities of the Mellin
transform function Aω(t). The purely perturbative BFKL formalism generates
a Mellin transform function with a cut along the real axis in the ω-plane. How-
ever, it has been shown [2] that if the strong coupling runs with the transverse
momentum, t, a phase-matching boundary condition is automatically imposed
at a value, tc, of t where the t-dependence of Aω(t) changes from an oscillatory
function to a decaying one. If, moreover, one assumes that the infrared prop-
erties of QCD impose a further constraint on the phase of these oscillations at
some small value of transverse momentum, then the two constraints can only be
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simultaneously satisfied for a discrete set, ωn, of ω, and the singularity struc-
ture of Aω(t) becomes a set of poles, akin to Regge poles. In such cases the
amplitude A(y, t) may be written

A(y, t) =
∑

n

Aωn
(t)eωny (2)

The positions of the poles ωn as well as their residues, depend not only on the
infrared phases, selected by the infrared properties of QCD, but also on the
precise running of the coupling. In this way, the discrete BFKL formalism acts
as a communicator between high and low energy scales and the predictions of
these amplitudes with large rapidity gaps are affected by physics beyond the
Standard Model (BSM) even at thresholds which are considerably higher than
the energies at which such amplitudes are considered. In a recent paper [3] we
have suggested that the quality of the fit of low-x structure functions at HERA
is significantly improved by the presence of a supersymmmetry threshold at
around 10 TeV.

This immediately poses the question as to how the results from the discrete
BFKL formalism can match those of a DGLAP analysis [4] in the double leading-
logarithm (DLL) limit where both y and t are large, for which the function Aω(t)
obeys the DGLAP equation

e−t/2 ∂

∂t

{

et/2Aω(t)
}

=
CAαs(t)

πω
Aω(t) (3)

.
In the case of the purely perturbative BFKL formalism with a cut singularity

in ω, this match is understood [5] from the fact that at large g and small ω, the
Mellin transform function from the BFKL analysis is approximated by

Aω(t) ∼ exp

{

−

∫ t CAαs(t
′)

πω
dt′

}

, (4)

which is a solution to eq.(3) and the inverse Mellin transform (1) is dominated
by a saddle-point at

ω =

√

CAαs(t)

πy
. (5)

2 The Green function

The BFKL equation (at leading order) with running coupling is given by

∂

∂y
A(y, t) =

∫

dt′αs(t)K0(t, t
′)A(y, t′) (6)

and is solved in terms of a universal (i.e. process independent) Green function,
Gω(t, t

′), which obeys the equation
∫

dt′′ [ωδ(t− t′′ − αs(t)K0(t, t
′′)]Gω(t

′′, t) = δ(t− t′). (7)
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This Green function is only uniquely defined once certain boundary conditions
are imposed. The first of these is the requirement that for physically sensible
results

Gω(t, t
′)

t(t′)→∞

→ 0. (8)

There must also be a condition on the Green function for small t, (t′) which is
imposed by the infrared properties of QCD.

The kernel, K0(t, t
′) may be expressed in terms of its Fourier transform

K0(t, t
′) =

∫

dνeiν(t−t′)χ(ν). (9)

For simplicity, we start with a simplified model in which the characteristic
function is a quadratic function of ν, i.e.

χ(ν) = a− bν2, (10)

and writing the leading order running coupling as

αs(t) =
1

β0t
, (11)

the Green function obeys Airy’s equation

1

β0t

(

a+ b
∂2

∂t2

)

Gω(t, t
′) = ωGω(t, t

′), (12)

so that it may be expressed in terms of Airy functions Ai(zω(t)) and Bi(zω(t)),
where

zω(t) =

(

ωβ0

b

)1/3 (

t−
a

ωβ0

)

(13)

This Green function oscillates if t < a/(ωβ0) whereas for t > a/(ωβ0),
Ai decreases, whereas Bi increases. Thus a Green function, which is finite as
t (t′) → ∞ may be written as

Gω(t, t
′) = Ai(zω(t))Bi(zω(t

′))θ(t − t′) +Bi(zω(t))Ai(zω(t
′))θ(t′ − t) (14)

However, this is not unique. A more general solution whch satisfies the
ultraviolet boundary conditions is

Gω(t, t
′) = Ai(zω(t))Bi(zω(t

′))θ(t− t′) +Bi(zω(t))Ai(zω(t
′))θ(t′ − t), (15)

where
Bi(zω(t)) = Bi(zω(t)) + cωAi(zω(t)). (16)

The coefficint cω encodes the infrared properties of QCD and thereby determines
the behaviour of the Green function for small t (t′).

If we write cω = cot(φ(ω)), then for sufficiently small t ( zω(t) ≪ 0) we
have

Bi(zω(t) →
1

sin(φ(ω))
sin

(

2

3
(zω(t))

2/3
+

π

4
+ φ(ω)

)

(17)
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This has poles whenever φ(ω) = nπ and these are the Regge poles of the
BFKL pomeron. determined by the phase of the oscillatory part of the Green
function at small t.

This means that the Green function can be written in terms of a the discrete
eigenfunctions, fω(t) of the BFKL operator, αs(t)K0(t, t

′) with eigenvalues ωn

as

Gω(t, t
′) =

∑

n

fωn
(t)f ∗ωn

(t′)

ω − ωn
+ terms analytic in ω (18)

The sum generates the discrete poles of the BFKL pomeron but the analytic
remainder is crucial for the matching of the t−dependence of the large rapidity-
gap amplitudes to DGLAP in the DLL limit.

In the case of the real BFKL characteristic function

χ(ν) = 2 [Ψ(1)−ℜe {Ψ(1/2 + iν)}] , (19)

the Green function may still be written in terms of Airy functions in the semi-
classical approximation (in which the oscillation frequency is treated as a slowly
varying function of t). The Green function is once again given by eq.(15), but
in this case the argument zω(t) of the Airy functions is given by

2

3
(zω(t))

3/2
=

∫ t

tc

dt′νω(t
′), (20)

where νω(t) is the solution to

αs(t)χ (νω(t)) = ω, (21)

and tc is the value of t at which νω(tc) = 0. Note that this value of tc depends
in the exact nature of the running of the coupling and is therefore sensitive to
any thresholds for BSM physics - even for very large values of such thresholds.

3 Matching to DGLAP

For sufficiently large t, νω(t) may be approximated by

νω(t)
t→∞
→ i

(

1

2
−

CAαs(t)

πω

)

(22)

and the Airy function, Ai, approximates to

Ai(zω(t)) ∼ e−t/2 exp

{
∫ t

dt′
CAαs(t

′)

πω

}

(23)
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Figure 1: Contour for the inverse mellin transform of the scattering amplitude

4 Application to Deep Inelastic Scattering

For deep-inelastic scattering t = ln
(

Q2/Λ2
)

, where Q2 is the photon virtuality,
and the rapidity y is replaced by ln(1/x). In the BFKL formalism, the unin-
tegrated gluon density, ġ(x, t) which is derivative w.r.t. t of the gluon density,
g(x, t) is given by

ġ(x, t) =

∫

C

dω

∫

dt′x−ωGω(t, t
′)ΦP (t

′), (24)

where ΦP (t) is the impact factor that describes the coupling of the QCD pomeron
to the proton and is the only process-dependent factor.

The integral over ω goes over a contour C taken to the right of all the poles
of Gω

On the other hand the integrand possesses a saddle-point at ω = ωs given
by

− ln(x) =
∂

∂ω
ln [Ai (zω(t))]ω=ωs

(25)
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Figure 2: Deformed contour for the inverse Mellin transform of the scattering
amplitude in the case where the saddle-point, ωs lies to the right of all the poles
of Gω .

For sufficiently large t, this saddle-point lies to the right of all the poles of
Gω. i.e.

ωs ≫
4 ln 2CAαs(t)

π
(26)
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Figure 3: Deformed contour for the inverse Mellin transform of the scattering
amplitude in the case where the saddle-point, ωs lies to the left of the leading
pole of Gω.

and the contour may be deformed without crossing a singularity, such that the
saddle-point approximation is valid and yields

ġ(x, t) ∼ x−ωs

∫

dt′Gωs
(t, t′)ΦP (t

′). (27)

For large t for which the saddle-point is given by (5), we recover the DGLAP
expression on the DLL limit.

The discrete poles affect the overall normalization of the unintegrated gluon
density, but not its t-dependence.

However, if t is not sufficiently large then this saddle-point lies to the left
of one or more of the poles of Gω and so the saddle-point approximation must
be supplemented by the contribution from the contour surrounding these poles,
giving rise to an expression for the unintegrated gluon density

ġ(x, t) ∼ x−ωs

∫

dt′Gωs
(t, t′)ΦP (t

′) +
∑

ωn>ωs

Anx
−ωnAi (zωn

(t)) . (28)

The contribution from the poles, which does not, in any way, match the
DGLAP expression dominates at sufficiently low x. Therefore the DLL limit of
DGLAP is not a good approximation in this region of t.

5 Summary

The (discrete) BFKL universal Green function has poles whose positions and
residues are controlled by

1. The infrared properties of QCD which fixes the phase of the oscillation at
small t.

2. The precise running of the coupling including the effects of any BSM
thresholds.

The Green function consists of a set of poles supplemented by an part which
is analytic in ω in such a way that
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1. For sufficiently large t, when the saddle-point in the inverse Mellin trans-
form lies to the right of all the discrete poles, the t-dependence of the
BFKL amplitude matched that of a DGLAP analysis in the DLL limit.

2. As t is reduced such that the saddle-point lies to the left of one or more
of these poles, the saddle-point approximation for the BFKL amplitude
must be supplemented by the contribution from the poles to the right of
the saddle-point and a match to a DGLAP analysis is no longer obtained.
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